
Module 4: Analyzing and Optimizing Technical
and Business Processes

Preparing for Your
Professional
Cloud Architect
Journey

Welcome to Module 4: Analyzing and Optimizing Technical and Business Processes.

Review and
study planning

Now let’s review how to use these diagnostic questions to help you identify what to
include in your study plan.

As a reminder - this course isn’t designed to teach you everything you need to know
for the exam - and the diagnostic questions don’t cover everything that could be on
the exam. Instead, this activity is meant to give you a better sense of the scope of this
section and the different skills you’ll want to develop as you prepare for the
certification.

Analyzing and defining technical processes

Analyzing and defining business processes

Developing procedures to ensure reliability
of solutions in production

4 1

Your study plan:
Analyzing and optimizing technical and business processes

4 2

4 3

.

.

.

We’ll approach this review by looking at the objectives of this exam section and the
questions you just answered about each one. We’ll introduce an objective, briefly
review the answers to the related questions, then talk about where you can find out
more in the learning resources and/or in Google Cloud documentation. As we go
through each section objective, use the page in your workbook to mark the specific
documentation, courses (and modules!), and quests you’ll want to emphasize in your
study plan.

Analyzing and defining technical processes

Considerations include:

● Software development life cycle (SDLC)

● Continuous integration / continuous deployment

● Troubleshooting / root cause analysis best practices

● Testing and validation of software and infrastructure

● Service catalog and provisioning

● Business continuity and disaster recovery

4 1.

In the architecture design process, a Professional Cloud Architect needs to consider
the current technical process and what is desired in the future. For example, if you are
in an environment with separate ops and dev teams, you will need a different type of
process than an environment that uses SRE and DevOps practices. SRE and
DevOps processes may not be what you use currently, but they are at the heart of
Google’s approach and you should be familiar with these concepts.

Question 1 tested your knowledge of automating infrastructure on Google Cloud with
Terraform. Question 2 explored the use of CI/CD pipelines to automate service
deployment. Question 3 tested your knowledge of designing services to meet
requirements for availability, durability, and scalability. Question 4 asked you to
identify steps to use Cloud Source Repositories for source and version control.
Question 5 tested your knowledge of using Artifact Registry to manage containers.
Question 6 explored your knowledge of recommended design patterns for disaster
recovery. Question 7 tested your knowledge of using a circuit breaker and truncated
exponential backoff design patterns. Question 8 tested your ability to implement
fault-tolerant systems by avoiding single points of failure, correlated failures, and
cascading failures. Question 9 asked you to select a deployment pattern for rolling out
updates.

Diagnostic Question 01 Discussion

A. Commit the configuration file to your software repository.

B. Run terraform plan to verify the contents of the Terraform
configuration file.

C. Run terraform apply to deploy the resources described in the
configuration file.

D. Run terraform init to download the necessary provider modules.

You are asked to implement a lift and shift
operation for Cymbal Direct’s Social Media
Highlighting service. You compose a
Terraform configuration file to build all
the necessary Google Cloud resources.

What should you do?

4 1.

What is the next step in the Terraform
workflow for this effort?

Feedback:
A. Incorrect. You should run init and run plan on your Terraform workflow before you
commit the validated configuration file to your software repository.
B. Incorrect. You should run the init command before you run the plan command.
C. Incorrect. You should run init your providers and test your configuration with a plan
before you run apply to allocate or change your resources.
D. Correct! Running init in the directory containing your Terraform configuration file
ensures that the correct plugins are loaded for the providers and resources
requested.

Where to look:
https://cloud.google.com/docs/terraform

Content mapping:
● Architecting with Google Compute Engine (ILT)

○ M10 Infrastructure Automation

● Elastic Google Cloud Infrastructure: Scaling and Automation (On-demand)
○ M3 Infrastructure Automation

Summary:
Automation tools like Terraform let you implement and manage infrastructure as code.
Treating your Google Cloud resources as software lets you deploy, update, and
destroy a stack of resources in a repeatable way. Terraform offers a declarative

https://cloud.google.com/docs/terraform

model used to deploy and manage resources. Imperative methods specify exactly
how you want a resource configured. Declarative methods, however, let you specify
what you want deployed and aren’t as concerned with lower-level details. You must
write commands on the command line. Referencing an entire stack of resources you
want deployed in a configuration file and calling it once is considered declarative.

A Terraform workflow starts with authoring your TensorFlow configuration file. A
Terraform provider specifies the cloud environment used. The available providers for
Google Cloud are “Google” or “Google-beta.” Resources entries in the configuration
file specify what resources you want deployed and let you provide arguments to
define their operating characteristics. After you write your configuration file, run the
Terraform Init command in the development directory your configuration file is in. This
downloads the provider modules required by your configuration file. To verify that
there are no mistakes in the config file, you can run a Terraform plan command. You
can make any needed changes before deploying your infrastructure. Finally, you run a
Terraform apply command to deploy your infrastructure.

Diagnostic Question 02 Discussion

A. Implement and reference a source repository in your Cloud Build
configuration file.

B. Implement a build trigger that applies your build configuration when a
new software update is committed to Cloud Source Repositories.

C. Specify the name of your Container Registry in your Cloud Build
configuration.

D. Configure and push a manifest file into an environment repository in
Cloud Source Repositories.

You have implemented a manual
CI/CD process for the
container services required for
the next implementation of the
Cymbal Direct’s Drone Delivery
project. You want to automate
the process.

4 1.

What should you do?

Feedback:
A. Incorrect. You can reference a source repository in your Cloud Build configuration,
but the build won’t be automated unless you implement a build trigger.
B. Correct! Configuring a build trigger automates the CI/CD process based on when
the software is posted to a repository.
C. Incorrect. The Container Registry specifies where Cloud Build should post the
containers it builds.
D. Incorrect. The question asks about automating this process. You would need to
configure a build trigger to push the manifest placed in your environment repository to
Kubernetes to automate the process.

Where to look:
https://cloud.google.com/source-repositories/docs/features#connected_repositories

Content mapping:
● Architecting with Google Cloud: Design and Process (ILT)

○ M3 DevOps Automation

● Reliable Google Cloud Infrastructure: Design and Process (On-demand)
○ M3 DevOps Automation

Summary:
Continuous integration/continuous delivery (CI/CD) pipelines automate the testing and
delivery of code by monitoring a controlled software repository. When new software is

https://cloud.google.com/source-repositories/docs/features#connected_repositories

checked in, the pipeline orchestrator will first run unit tests. If the tests are successful,
a deployment package is built and saved to a Container Registry, which completes
the steps for continuous integration. Continuous delivery deploys your images or
artifacts to the operational environment you specify, such as App Engine or GKE.

With Google Cloud, you can use Cloud Source Repositories as your version control
repository. Unit testing and container artifacts can be produced through Cloud Build
and automated through build triggers. Common places to save and manage your
finalized images include Container Registry and Artifact Registry. Continuous Delivery
can also be implemented through steps specified in Cloud Build and implementing
build triggers to apply build operations when a new manifest is added to a monitored
candidate repository.

Cloud Build handles building, testing, and deploying your application logic through a
build configuration. This build configuration is executed by cloud builders, which are
container instances with a common set of tools loaded on them. Provided builders
include curl, docker, gcloud CLI, gsutil, git, and gke-deploy. You can also implement
your own cloud builder.

Diagnostic Question 03 Discussion

A. Implement a scheduled snapshot on your Compute Engine instances.

B. Implement a regional managed instance group.

C. Monitor your application’s usage metrics and implement autoscaling.

D. Perform health checks on your Compute Engine instances.

You have an application
implemented on Compute Engine.
You want to increase the
durability of your application.

4 1.

What should you do?

Feedback:
A. Correct! Durability ensures that your data is protected and available. Snapshots
are a viable way of backing up your data in Compute Engine.
B. Incorrect. Managed instance groups improve availability, not durability.
C. Incorrect. Autoscaling is a method for implementing scalable applications, not
durability.
D. Incorrect. Health checks provide information about availability, not durability.

Where to look:
https://cloud.google.com/architecture/framework/reliability

Content mapping:
● Architecting with Google Cloud: Design and Process (ILT)

○ M7 Designing Reliable Systems

● Reliable Google Cloud Infrastructure: Design and Process (On-demand)
○ M7 Designing Reliable Systems

Summary:
Availability, durability, and scalability are design characteristics you need to consider
when developing a cloud application. Availability is a measurement of uptime.
Availability can be achieved through fault tolerance. You can implement backup
systems in different zones or regions and use health checks to notify you when to
failover to alternate resources. In Compute Engine, you can use regional or

https://cloud.google.com/architecture/framework/reliability

multi-regional instance groups with health checks as an option for increasing
availability.

Durability is a measurement related to data protection. In your disaster recovery
planning, durability directly relates to your recovery point objective, which is how
much data you can afford to lose when a system failure happens. Important methods
to improve durability include implementing a backup strategy and replicating data to
multiple zones or regions depending on your needs. Implementing snapshots is a way
to increase the durability of persistent disks of a Compute Engine instance.

Scalability defines an application’s ability to handle increased load without failing.
Making an application scalable requires usage monitoring and autoscaling to respond
to changes in load. Managed instance groups in Compute Engine provide autoscaling
capabilities. Autoscaling in a managed instance group is based on a policy you
specify. An autoscaling policy defines how the autoscaler reacts to operational needs
based on instance group metrics such as average CPU, load-balancing requests per
second, or specified Cloud Monitoring metrics. The autoscaler will scale in (remove
instances) or scale out (add instances) based on these metrics.

Diagnostic Question 04 Discussion

A. Implement a Cloud Build configuration file with build steps.

B. Implement a build trigger that references your repository and branch.

C. Set proper permissions for Cloud Build to access deployment resources.

D. Upload application updates and Cloud Build configuration files to Cloud Source
Repositories.

Developers on your team
frequently write new versions
of the code for one of your
applications. You want to
automate the build process
when updates are pushed to
Cloud Source Repositories.

4 1.

What should you do?

Feedback:
A. Incorrect. Cloud Build configuration files specify the arguments for the
containerized build requirements for your application. They do not automate the
process.
B. Correct! Cloud Build triggers automate the build process when new files are placed
into the name and branch of the repository that you specify.
C. Incorrect. Permissions provide Cloud Build with the required access to deployment
resources. Having the correct permissions does not automate the process.
D. Incorrect. Unless you have implemented a build trigger, uploading new files will not
automatically start the build process.

Where to look:
https://cloud.google.com/source-repositories/docs/concepts

Content mapping:
● Architecting with Google Cloud: Design and Process (ILT)

○ M3 DevOps Automation

● Reliable Google Cloud Infrastructure: Design and Process (On-demand)
○ M3 DevOps Automation

Summary:
Cloud Source Repositories are private git repositories hosted on Google Cloud. You
first create a repository with the create command. You can then clone it to your local

https://cloud.google.com/source-repositories/docs/concepts

environment and add or modify code in that local directory. When you are done
coding, add the files you worked on to a new commit. You then push the local
changes to your remote Cloud Source Repository.

When the app is ready for deployment, you can run the appropriate gcloud CLI
command from your development environment. If you want to automate this process,
ensure that your Cloud Build service account has the proper permissions to deploy to
the service of your choice and provide Cloud Build configuration info in a YAML file.
Cloud Build consists of simple containers that run commands in their build
environment without your having to configure and manage hardware. When your build
configuration is documented, you can save that in your repository also.

Cloud Build triggers will monitor your Cloud Source Repositories when new push
events happen. Your trigger will require the name of the repository and branch you
want to create the event from. You then specify the Cloud Build configuration you
want to reference based on that event. Now when you update your app and push it to
your repository, it will fire the trigger and automatically start the build operation.

Diagnostic Question 05 Discussion

A. The runtime environment does not have permissions to the
Artifact Registry in your current project.

B. The runtime environment does not have permissions to Cloud
Source Repositories in your current project.

C. The Artifact Registry might be in a different project.

D. You need to specify the Artifact Registry image by name.

Your development team used Cloud Source
Repositories, Cloud Build, and Artifact
Registry to successfully implement the build
portion of an application's CI/CD process..
However, the deployment process is erroring
out. Initial troubleshooting shows that the
runtime environment does not have
access to the build images. You need to
advise the team on how to resolve the issue.

4 1.

What could cause this problem?

Feedback:
A. Incorrect. Runtime environments have read access permissions to Artifact Registry
in the same project.
B. Incorrect. Runtime environments do not need access to Cloud Source Repositories
as part of the deployment process.
C. Correct! Permissions must be configured to give the runtime service account
permissions to the Artifact Registry in another project.
D. Incorrect. In Artifact Registry, you need to identify images by tag or digest.

Where to look:
https://cloud.google.com/source-repositories/docs/concepts

Content mapping:
● Architecting with Google Cloud: Design and Process (ILT)

○ M3 DevOps Automation

● Reliable Google Cloud Infrastructure: Design and Process (On-demand)
○ M3 DevOps Automation

Summary:
Artifact Registry provides managed storage and sharing of container images. It can
be integrated into your CI/CD process to deploy new logic to staging and production
environments. Cloud Build and Cloud Source Repositories are two other Google
Cloud products that can be used with Artifact Registry to provide a managed delivery

https://cloud.google.com/source-repositories/docs/concepts

pipeline. In Cloud Build, a build config file defines the registry where a container
image is saved. Runtimes pull container images from your repository during the
continuous delivery step of your CI/CD process. Supported runtimes include Cloud
Run and Google Kubernetes Engine. These services have access to a registry within
the same project. Permissions can also be configured for access to a registry in
another project.

Diagnostic Question 06 Discussion

A. Hot with a low recovery time objective (RTO)

B. Warm with a high recovery time objective (RTO)

C. Cold with a low recovery time objective (RTO)

D. Hot with a high recovery time objective (RTO)

You are implementing a disaster
recovery plan for the cloud version of
your drone solution. Sending videos to
the pilots is crucial from an
operational perspective.

4 1.

What design pattern should you choose
for this part of your architecture?

Feedback:
A. Correct! Safety and compliance require your application to have a low RTO, so you
need a hot design pattern with minimal downtime.
B. Incorrect. A warm design pattern would consist of a standby system that you would
fail over to if something went wrong. The RTO would be higher than with a hot design
pattern.
C. Incorrect. By definition, cold design pattern has the highest RTO of the design
patterns. Depending on the backup/snapshot pattern you have, you might be able to
decrease the RPO.
D. Incorrect. The system requires a low RTO, so we ensure that the pilots get the
video they need to navigate the drones where they need to go and avoid obstacles.

Where to look:
https://cloud.google.com/blog/products/storage-data-transfer/designing-and-implemen
ting-your-disaster-recovery-plan-using-gcp
https://cloud.google.com/architecture/dr-scenarios-planning-guide

Content mapping:
● Architecting with Google Cloud: Design and Process (ILT)

○ M7 Designing Reliable Systems

● Reliable Google Cloud Infrastructure: Design and Process (On-demand)
○ M7 Designing Reliable Systems

https://cloud.google.com/blog/products/storage-data-transfer/designing-and-implementing-your-disaster-recovery-plan-using-gcp
https://cloud.google.com/blog/products/storage-data-transfer/designing-and-implementing-your-disaster-recovery-plan-using-gcp
https://cloud.google.com/architecture/dr-scenarios-planning-guide

Summary:
Two key metrics associated with disaster recovery planning include a recovery time
objective (RTO) and a recovery point objective (RPO). The RTO is the maximum
acceptable length of time that your application can be offline. The RPO describes how
much data you will lose while a system is down. When these two metrics are smaller,
your application will cost more to run.

Google Cloud has features that can help you with DR planning, such as global
network design, built-in redundancy, scalability, security, and compliance.

DR patterns can be cold, warm, or hot. These patterns determine how quickly a
system can recover if something goes wrong. Cold means your system has no
failover or standby strategy. Your system will be down until you manually configure a
replacement or the system comes back up. A good example of this is a system that
accesses and queries historical data. A warm pattern could be a cold standby, where
you implement resources but must configure your application to point to them and
possibly start them if something goes wrong with the primary. A hot pattern is an
active-active architecture, where you transfer data synchronously to your secondary
system and load balance across the systems, so if one goes down, the other one will
pick up the slack.

Diagnostic Question 07 Discussion

A. Applying a circuit breaker

B. Applying exponential backoff

C. Increasing jitter

D. Applying graceful degradation

The number of requests received by your
application is nearing the maximum
specified in your design. You want to
limit the number of incoming requests
until the system can handle the workload.

4 1.

What design pattern does
this situation describe?

Feedback:
A. Correct! A circuit breaker limits requests based on a threshold that you specify.
B. Incorrect. Exponential backoff increases the amount of time between retry
requests. It does not limit them. Applying exponential backoff is a client-side solution;
we need a server-side solution to address this situation.
C. Incorrect. Jitter adds randomness to the exponential backoff to better spread the
retries received by the system. Increasing jitter is a client-side solution; we need a
server-side solution to address this situation.
D. Incorrect! Graceful degradation limits the results provided by the system when
certain thresholds are met. It does not limit or respond with errors based on new or
additional requests.

Where to look:
https://cloud.google.com/architecture/scalable-and-resilient-apps#patterns_and_practi
ces
https://cloud.google.com/traffic-director/docs/configure-advanced-traffic-management
https://sre.google/sre-book/addressing-cascading-failures/

Content mapping:
● Architecting with Google Cloud: Design and Process (ILT)

○ M7 Designing Reliable Systems

● Reliable Google Cloud Infrastructure: Design and Process (On-demand)
○ M7 Designing Reliable Systems

https://cloud.google.com/architecture/scalable-and-resilient-apps#patterns_and_practices
https://cloud.google.com/architecture/scalable-and-resilient-apps#patterns_and_practices
https://cloud.google.com/traffic-director/docs/configure-advanced-traffic-management
https://sre.google/sre-book/addressing-cascading-failures/

Summary:
Traffic management lets you reduce traffic to overloaded systems or services. Two
techniques that can help you in this situation are circuit breaker patterns and
exponential backoffs. These techniques can help avoid cascading failures, where an
issue with one service causes other services to fail too.

With circuit breakers, failure thresholds are set to prevent client requests from
overloading your backends. When the threshold is met, no new connections or
additional requests are allowed. Circuit breaking sends an error when requests are
refused. Example settings include:

● Maximum requests per connection
● Maximum number of connections
● Maximum pending requests
● Maximum requests
● Maximum retries

Another issue when systems start being overwhelmed with requests is that the
number of retries increases. Capped exponential backoff means that clients multiply
their backoff by a constant after each attempt, up to some maximum value. Jitter
introduces randomness to the exponential backoff, so spikes occur less frequently
and at a more constant rate.

Diagnostic Question 08 Discussion

A. Configure proper startup scripts for your VMs.

B. Deploy a load balancer to distribute traffic across multiple
machines.

C. Create persistent disk snapshots.

D. Implement a managed instance group and load balancer.

The pilot subsystem in your Delivery by
Drone service is critical to your service.
You want to ensure that connections
to the pilots can survive a VM
outage without affecting connectivity.

4 1.

What should you do?

Feedback:
A. Incorrect. Startup scripts ensure that your machines are properly configured and
ready to run your app. They do not help with outages.
B. Incorrect. Cloud Load Balancing helps distribute traffic across machines in multiple
instance groups. It does not heal or scale VMs.
C. Incorrect. Persistent disk snapshots prevent the loss of data in an outage. They do
not help with healing or connectivity.
D. Correct! Managed instance groups with a load balancer offer scaling and
autohealing that automatically replaces the instances that are not responding.

Where to look:
https://cloud.google.com/compute/docs/tutorials/robustsystems
https://cloud.google.com/architecture/scalable-and-resilient-apps#patterns_and_practi
ces

Content mapping:
● Architecting with Google Cloud: Design and Process (ILT)

○ M7 Designing Reliable Systems

● Reliable Google Cloud Infrastructure: Design and Process (On-demand)
○ M7 Designing Reliable Systems

Summary:
Single points of failure occur when not enough backup resources are allocated. They

can be avoided through data replication and by implementing multiple compute
instances. It is better to distribute load across multiple small, distributed units than to
have fewer, larger ones. If failures do occur, the backup systems must have enough
capacity to handle the extra load.

A correlated failure is when related items fail simultaneously. The impact of correlated
failures can be reduced by containerizing your application and implementing
microservices that can run on multiple platforms. If it makes sense in your
architecture, you can do this across multiple zones or regions.

Cascading failures are closely related to correlated failures.This happens when one
component of the system is overwhelmed and stops working. Other parts of the
system try to pick up the load. They are also overwhelmed and start failing. The
failures flow, or cascade, across the system.

Possible ways to reduce the occurrence of cascading failures include monitoring the
deployment of your application and ensuring that it is in the proper state before it
accepts requests, and ensuring that it has the proper resources provisioned. Server
overload can be minimized by serving degraded results, load shedding, or graceful
degradation.

Diagnostic Question 09 Discussion

A. You should implement canary testing.

B. You should implement A/B testing.

C. You should implement a blue/green deployment.

D. You should implement an in-place release.

Cymbal Direct wants to improve its
drone pilot interface. You want to
collect feedback on proposed
changes from the community of pilots
before rolling out updates
systemwide.

4 1.

What type of deployment
pattern should you implement?

Feedback:
A. Incorrect. Canary testing uses a subset of real traffic to test the production
performance of a new version.
B. Correct! A/B testing is a pattern that lets you evaluate new proposed functionality.
C. Incorrect. Blue/green does not let you test your new features. It instantiates a new
version and then moves traffic to it when its resources are stable.
D. Incorrect. An in-place release will not let you test or evaluate your new features. It
will replace the version when it is deployed to the existing resources.

Where to look:
https://cloud.google.com/architecture/implementing-deployment-and-testing-strategies
-on-gke
https://sre.google/workbook/canarying-releases/

Content mapping:
● Getting Started with Google Kubernetes Engine (ILT and On-demand)

○ M4 Introduction to Kubernetes Workloads

Summary:
Deployment options for new versions of your application include replacing the old
version with the new release in-place. In this pattern, your new version starts
accepting production traffic as soon as it is deployed. Another option is to scale down
the current version before you scale up the new one, but this option does incur
downtime. In rolling updates, a subset of application instances, instead of all of them,

is upgraded at the same time. This method requires no downtime.

In a blue/green deployment pattern (also called red/black), you deploy the new
version next to the current one, but only one version is live at a time. The green
version is deployed and tested, and then traffic is routed to it when it is stable. The
blue version (your original version) can be kept up for possible rollback and eventually
be decommissioned or used for a subsequent update. There is no downtime
associated with blue/green deployments.

With a canary test, you deploy your new version next to your current one. You specify
a subset of your production traffic to be routed to the canary version to evaluate its
performance. The benefit of this pattern is that you are testing against production
traffic.

A/B testing is closely related to canary testing. As opposed to being version-oriented,
A/B testing is implemented to measure the effectiveness of proposed changes.
Canary testing is concerned with production performance, while A/B testing is
concerned about effectiveness of new features.

Analyzing and defining technical processes

Securing the software development lifecycle with Cloud Build and SLSA

CI/CD with Google Cloud

Site Reliability Engineering

DevOps tech: Continuous testing | Google Cloud

Application deployment and testing strategies | Cloud Architecture Center

Chapter 17 - Testing for Reliability

Service Catalog documentation | Google Cloud

What is Disaster Recovery? | Google Cloud

API design guide

Resources to start your journey

4 1.

You just reviewed a number of diagnostic questions that asked you to analyze and
define technical processes. These are some links to learn more about the concepts in
these questions.

https://cloud.google.com/blog/products/application-development/google-introduces-sls
a-framework
https://cloud.google.com/docs/ci-cd
https://sre.google/
https://cloud.google.com/architecture/devops/devops-tech-test-automation
https://cloud.google.com/architecture/application-deployment-and-testing-strategies
https://sre.google/sre-book/testing-reliability/
https://cloud.google.com/service-catalog/docs
https://cloud.google.com/learn/what-is-disaster-recovery
https://cloud.google.com/apis/design/

https://cloud.google.com/blog/products/application-development/google-introduces-slsa-framework
https://cloud.google.com/docs/ci-cd
https://sre.google/
https://cloud.google.com/architecture/devops/devops-tech-test-automation
https://cloud.google.com/architecture/application-deployment-and-testing-strategies
https://sre.google/sre-book/testing-reliability/
https://cloud.google.com/service-catalog/docs
https://cloud.google.com/learn/what-is-disaster-recovery
https://cloud.google.com/apis/design/
https://cloud.google.com/blog/products/application-development/google-introduces-slsa-framework
https://cloud.google.com/blog/products/application-development/google-introduces-slsa-framework
https://cloud.google.com/docs/ci-cd
https://sre.google/
https://cloud.google.com/architecture/devops/devops-tech-test-automation
https://cloud.google.com/architecture/application-deployment-and-testing-strategies
https://sre.google/sre-book/testing-reliability/
https://cloud.google.com/service-catalog/docs
https://cloud.google.com/learn/what-is-disaster-recovery
https://cloud.google.com/apis/design/

Analyzing and defining business processes4 2.

Considerations include:

● Stakeholder management (e.g. influencing and facilitation)

● Change management

● Team assessment / skills readiness

● Decision-making processes

● Customer success management

● Cost optimization / resource optimization (capex / opex)

Although your diagnostic questions did not focus specifically on this objective,
analyzing and defining business processes is a key part of a Professional Cloud
Architect’s job. A cloud architect is not simply an engineer (as if “just” being an
engineer was simple). An engineer typically focuses on how to build the best technical
solution. An architect also considers which solution best meets the business or
organization’s needs and how it fits into the current processes.

What is Digital Transformation?

Cloud Cost Optimization: Principles for Lasting Success

Cost Optimization on Google Cloud for Developers and Operators

Certification solutions for Team Readiness

Resources to start your journey

Analyzing and defining business processes4 2.

There is not a diagnostic question for exam sub-section 4.2 in this course. These are
some links to help you learn more about how to analyze and define business
processes in your role as a Professional Cloud Architect and as you prepare to
answer questions on these concepts in your exam.

https://cloud.google.com/learn/what-is-digital-transformationcation-development/googl
e-introduces-slsa-framework
https://cloud.google.com/blog/topics/cost-management/principles-of-cloud-cost-optimi
zation
https://cloud.google.com/architecture/cost-efficiency-on-google-cloudplication-develop
ment/google-introduces-slsa-framework
https://cloud.google.com/blog/topics/training-certifications/google-cloud-introduces-ne
w-certifications-and-training-to-address-cloud-skills-crisists/application-development/g
oogle-introduces-slsa-framework

https://cloud.google.com/learn/what-is-digital-transformationcation-development/google-introduces-slsa-framework
https://cloud.google.com/blog/topics/cost-management/principles-of-cloud-cost-optimization
https://cloud.google.com/architecture/cost-efficiency-on-google-cloudplication-development/google-introduces-slsa-framework
https://cloud.google.com/blog/topics/training-certifications/google-cloud-introduces-new-certifications-and-training-to-address-cloud-skills-crisists/application-development/google-introduces-slsa-framework
https://cloud.google.com/learn/what-is-digital-transformationcation-development/google-introduces-slsa-framework
https://cloud.google.com/learn/what-is-digital-transformationcation-development/google-introduces-slsa-framework
https://cloud.google.com/blog/topics/cost-management/principles-of-cloud-cost-optimization
https://cloud.google.com/blog/topics/cost-management/principles-of-cloud-cost-optimization
https://cloud.google.com/architecture/cost-efficiency-on-google-cloudplication-development/google-introduces-slsa-framework
https://cloud.google.com/architecture/cost-efficiency-on-google-cloudplication-development/google-introduces-slsa-framework
https://cloud.google.com/blog/topics/training-certifications/google-cloud-introduces-new-certifications-and-training-to-address-cloud-skills-crisists/application-development/google-introduces-slsa-framework
https://cloud.google.com/blog/topics/training-certifications/google-cloud-introduces-new-certifications-and-training-to-address-cloud-skills-crisists/application-development/google-introduces-slsa-framework
https://cloud.google.com/blog/topics/training-certifications/google-cloud-introduces-new-certifications-and-training-to-address-cloud-skills-crisists/application-development/google-introduces-slsa-framework

● Chaos engineering

● Penetration testing

Developing procedures to ensure
reliability of solutions in production 4 3.

In addition to designing reliable solutions, part of your role as a Professional Cloud
Architect involves developing procedures to ensure the reliability of solutions after
they are in production. The exam guide lists chaos engineering and penetration as
examples of practices you need to understand.

Question 10 tested your knowledge of procedures that are used to test the resilience
of an application.

Diagnostic Question 10 Discussion

A. Block access to storage assets in one of your zones.

B. Inject a bad health check for one or more of your resources.

C. Load test your application to see how it responds.

D. Block access to all resources in a zone.

You want to establish procedures
for testing the resilience of the
delivery-by-drone solution.

How would you simulate
a scalability issue?

4 3.

Feedback:
A. Incorrect. Ensuring that your data remains available in an outage is part of
durability.
B. Incorrect. Health checks help address availability needs.
C. Correct! Designing for increased customer demand is one way to ensure
scalability.
D. Incorrect. Responding to outages of zonal resources is a key capability in
addressing availability.

Where to look:
https://cloud.google.com/architecture/scalable-and-resilient-apps
https://cloud.google.com/blog/topics/inside-google-cloud/rethinking-business-resilienc
e-with-google-cloud
https://cloud.google.com/architecture/scalable-and-resilient-apps#test_your_resilience

Content mapping:
● Architecting with Google Cloud: Design and Process (ILT)

○ M7 Designing Reliable Systems

● Reliable Google Cloud Infrastructure: Design and Process (On-demand)
○ M7 Designing Reliable Systems

Summary:
Resilience allows an application to continue functioning when different types of

failures occur. You must design for resilience. Methods to help you build highly
available and resilient apps include having services available in multiple regions and
zones. Your compute resources, whether virtual machines (Compute Engine instance
groups) or microservice container architectures (Google Kubernetes Engine
clusters), can be distributed across zones of a region. From a storage perspective,
regional persistent disks are replicated across zones synchronously. Load balancing
allows for low latency routing of your application traffic. Google’s serverless offerings
often have built-in redundancy.

Developing procedures to ensure
reliability of solutions in production

Site Reliability Engineering

Site Reliability Engineering (SRE) | Google Cloud

Patterns for scalable and resilient apps | Cloud Architecture Center

How to achieve a resilient IT strategy with Google Cloud

Patterns for scalable and resilient apps | Cloud Architecture Center

Disaster recovery planning guide | Cloud Architecture Center

Resources to start your journey

4 3.

The diagnostic question that you just reviewed tested your knowledge of one aspect
of developing procedures to ensure reliability of solutions in production. These are
some links to learn more.

https://sre.google/
https://cloud.google.com/sre#section-6
https://cloud.google.com/architecture/scalable-and-resilient-apps
https://cloud.google.com/blog/topics/inside-google-cloud/rethinking-business-resilienc
e-with-google-cloud
https://cloud.google.com/architecture/scalable-and-resilient-apps#test_your_resilience
https://cloud.google.com/architecture/dr-scenarios-planning-guide

https://sre.google/
https://cloud.google.com/sre#section-6
https://cloud.google.com/architecture/scalable-and-resilient-apps
https://cloud.google.com/blog/topics/inside-google-cloud/rethinking-business-resilience-with-google-cloud
https://cloud.google.com/architecture/scalable-and-resilient-apps#test_your_resilience
https://cloud.google.com/architecture/dr-scenarios-planning-guide
https://sre.google/
https://cloud.google.com/sre#section-6
https://cloud.google.com/architecture/scalable-and-resilient-apps#test_your_resilience

