
Proprietary + Confidential

Applications
in the Cloud

06

Proprietary + Confidential

Recap

Virtual machines

Networks

Storage

Containers

Options and benefits

Options and benefits

Options and benefits

Options and benefits

So far in this course, we’ve provided an introduction to Google Cloud and explored the
options and benefits related to using virtual machines, networks, storage, and
containers in the Cloud.

Proprietary + Confidential

App Engine

Google Cloud API management tools

Cloud Run

Applications in the Cloud

01
02
03

In this section of the course, we’ll turn our attention to developing applications in the
cloud. We’ll explore App Engine, three API management tools–Cloud Endpoints, API
Gateway, and Apigee API Management–and Cloud Run.

Proprietary + Confidential

Applications in the Cloud

App Engine

Google Cloud API management tools

Cloud Run

01
02
03

Let’s begin with App Engine, which is a fully managed, serverless platform for
developing and hosting web applications at scale.

Proprietary + Confidential

App Engine interfaces with many development tools

Languages

Eclipse IntelliJ Maven

Examples:

Libraries

Frameworks

Git Jenkins PyCharm

So, how does it work?

With App Engine, you can choose from popular coding languages, libraries, and
frameworks to develop apps with tools you’re familiar with and then automatically
provision servers and scale app instances based on demand. Options include Eclipse,
IntelliJ, Maven, Git, Jenkins, and PyCharm. That means that you can upload your code,
and Google will manage your app's availability.

Proprietary + Confidential

App Engine provides a full range of built-in services

NoSQL datastores

Built-in services
and APIs

Memcache

Load balancing

Health checks

Application logging

User authentication API

With App Engine, there are no servers to provision or maintain. App Engine provides
built-in services and APIs, like NoSQL datastores, Memcache, load balancing, health
checks, application logging, and a user authentication API that is common to most
applications.

Proprietary + Confidential

App Engine offers software development kits (SDKs)

APIs and libraries

Sandbox environment

Deployment tools

Each SDK includes:

App Engine offers software development kits, or SDKs, to help develop, deploy, and
manage your apps on your local machine.

Each SDK includes:
● All of the APIs and libraries available to App Engine,
● A simulated, secure sandbox environment that emulates all of the App Engine

services on your local computer,
● And deployment tools to upload your application to the cloud and manage

different versions.

The SDK manages your application locally, and the Google Cloud console manages
your application in production. Use the console’s web-based interface to create new
applications, configure domain names, change which version of your application is
live, examine access and error logs, and more.

Proprietary + Confidential

App Engine pricing and security

Only pay for the
resources used

Keeps web
applications safe

From a pricing perspective, you only pay for the resources you use with App Engine.

And Security Command Center–which is the security and risk management platform
for Google Cloud–keeps web applications safe. Through the Google Cloud console,
you can use the Security Command Center to automatically scan and detect common
web application vulnerabilities.

https://cloud.google.com/security-command-center

Proprietary + Confidential

 Two types of App Engine environments

Standard Flexible

There are two types of App Engine environments: standard and flexible.

Proprietary + Confidential

App Engine standard runs preconfigured containers

Standard
environment

Persistent storage with queries, sorting, and transactions

Automatic scaling and load balancing

Asynchronous task queues for performing work outside
the scope of a request

Scheduled tasks for triggering events at specified times
or regular intervals

Integration with other Google Cloud services and APIs

The first is the App Engine standard environment, which is based on container
instances running on Google's infrastructure. Containers are preconfigured with a
runtime from a standardized list of supported languages and versions, which includes
libraries that support App Engine standard APIs. For many applications, the standard
environment runtimes and libraries may be all you need.

Standard environment features include:

● Persistent storage with queries, sorting, and transactions.
● Automatic scaling and load balancing.
● Asynchronous task queues for performing work outside the scope of a

request.
● Scheduled tasks for triggering events at specified times or regular intervals.
● And integration with other Google Cloud services and APIs.

Proprietary + Confidential

Standard environment has two requirements

Use specified versions of Java, Python,
PHP, Go, Node.js, and Ruby 01

Application must conform to sandbox
constraints that are dependent on runtime02

There are a couple of requirements for using the standard environment:

1. You must use specified versions of Java, Python, PHP, Go, Node.js, and Ruby.
2. Your application must conform to sandbox constraints that are dependent on

runtime.

Applications run in a secure, sandboxed environment. This allows the App Engine
standard environment to distribute requests across multiple servers, and scale
servers to meet traffic demands. This means that your application runs within its own
secure, reliable environment that is independent of the hardware, operating system, or
physical location of the server.

Proprietary + Confidential

Standard environment workflow

Develop web app
and test locally

Deploy to App
Engine with SDK

01 02

App Engine scales
and services the app

03

A standard environment workflow typically follows these three steps:

1. First, a web application is developed and tested locally.
2. Second, the SDK is used to deploy the application to App Engine.
3. And third, App Engine scales and services the application.

Proprietary + Confidential

App Engine flexible environment uses custom containers

Flexible
environment

Instances are health-checked, healed, and co-located

Critical, backward-compatible updates are automatically
applied to the underlying operating system

VM instances are automatically located by geographical
region according to the settings in your project

VM instances are restarted on a weekly basis

App Engine also offers a flexible environment. If the standard environment’s sandbox
model is too restrictive for you, the flexible environment can let you specify the type of
container your web application will run in.

This option lets an application run inside Docker containers on Google Cloud’s
Compute Engine virtual machines. In this case, App Engine manages Compute Engine
machines for you.

This means that:

● Instances are health-checked, healed as necessary, and co-located with other
module instances within the project.

● Critical, backward-compatible updates are automatically applied to the
underlying operating system.

● VM instances are automatically located by geographical region according to
the settings in your project. Google's management services ensure that all of a
project's VM instances are co-located for optimal performance.

● And VM instances are restarted on a weekly basis. During restarts, Google's
management services will apply any necessary operating system and security
updates.

Proprietary + Confidential

Flexible environment use cases

Microservices

Authorization

SQL & NoSQL databases

Traffic splitting

Logging

Search

Versioning

Security scanning

Memcache

Content delivery networks

The flexible environment supports microservices, authorization, SQL and NoSQL
databases, traffic splitting, logging, search, versioning, security scanning, Memcache,
and content delivery networks.

Proprietary + Confidential

Flexible environment advantages

Take advantage of custom configurations
and libraries, while focusing on writing code 01

Customize the runtime and the operating
system of your virtual machine. Standard
runtimes include Python, Java, Go, Node.js,
PHP, .NET, and Ruby

02

Customize or provide runtimes by supplying
a custom Docker image or Dockerfile 03

App Engine Flexible allows users to also benefit from custom configurations and
libraries while still keeping their main focus on what they do best – writing code.

In addition, the App Engine flexible environment allows you to customize the runtime
and the operating system of your virtual machine by using Dockerfiles. As in App
Engine Standard, supported runtimes include Python, Java, Go, Node.js, PHP, and
Ruby . However, in App Engine Flexible, developers can also use different versions of
these runtimes or provide their own custom runtime by supplying a custom Docker
image or using a Dockerfile from the open source community.

Proprietary + Confidential

Standard environment Flexible environment

Instance startup Seconds Minutes

SSH access No Yes (although not by default)

Write to local disk No (some runtimes have read and
write access to the /tmp directory)

Yes, ephemeral (disk initialized on
each VM startup)

Support for 3rd-party binaries For certain languages Yes

Network access Via App Engine services Yes

Pricing model After free tier usage, pay per instance
class, with automatic shutdown

Pay for resource allocation per hour;
no automatic shutdown

Comparing the App Engine environments

So, how do these two environments compare to each other?

Let’s start with the standard environment, which is fast. It starts up instances of your
application in seconds, but you have less access to the infrastructure in which your
application runs. With the standard environment, you can’t use ssh to connect to the
virtual machines on which your application runs, and you can’t write to a local disk.
The standard environment does support third-party binaries for certain languages,
and you can use App Engine to make calls to the network. Finally, in terms of pricing,
after a free tier usage, you pay per instance class with automatic shutdown.

The flexible environment takes minutes to start up, instead of seconds. But it lets you
use ssh to connect to the virtual machines on which your application runs, it lets you
use local disk for scratch space, it lets you install third-party software, and it lets your
application make calls to the network without going through App Engine. In terms of
pricing, with the flexible environment, you pay for resource allocation per hour with no
automatic shutdown.

Because App Engine uses Docker containers, you may be wondering how App Engine
compares to Google Kubernetes Engine. App Engine's standard environment is for
people who want the service to take maximum control of their web and mobile
application’s deployment and scaling. Google Kubernetes Engine, however, gives the
application owner the full flexibility of Kubernetes. App Engine's flexible environment
is somewhere between the two.

Proprietary + Confidential

App Engine

Google Cloud API management tools

Cloud Run

Applications in the Cloud

01
02
03

Now that you’ve had a thorough overview of App Engine, let’s transition to Cloud
Endpoints and Apigee API Management. These are Google Cloud’s application
programming interfaces, or API management tools.

Proprietary + Confidential

APIs hide unnecessary details and simplify coding

A clean, well-defined interface

Underlying implementation can change

Changes to the API are made with versions

APIs

What is an API, exactly? A software service’s implementation can be complex and
changeable. If other software services had to be explicitly coded in detail in order to
use that service, the result would be brittle and error-prone. So instead, application
developers structure the software they write so that it presents a clean, well-defined
interface that hides unnecessary detail, and then they document that interface. That’s
an application programming interface. The underlying implementation can change, as
long as the interface doesn’t, and other pieces of software that use the API don’t have
to know or care.

Sometimes you do have to change an API, perhaps to add or deprecate a feature. To
cleanly make this kind of change to the API, developers create versions. For example,
version 2 of an API might contain calls that version 1 does not. This means that
programs that consume the API can specify the API version they want to use in their
calls.

Proprietary + Confidential

Google offers powerful API management tools

Cloud Endpoints Apigee API
Management

API Gateway

Supporting an API is a very important task, and Google Cloud provides three API
management tools: Cloud Endpoints, API Gateway, and Apigee API Management.

Proprietary + Confidential

Cloud Endpoints

Distributed API management system

Provides an API console, hosting, logging, monitoring, and other features

Use with any APIs that support the OpenAPI Specification

Supports applications running in App Engine, Google Kubernetes Engine,
and Compute Engine

Clients include Android, iOS, and Javascript

Cloud Endpoints is a distributed API management system that uses a distributed
Extensible Service Proxy, which is a service proxy that runs in its own Docker
container. The goal is to help you create and maintain even the most demanding APIs
with low latency and high performance.

Cloud Endpoints provides an API console, hosting, logging, monitoring, and other
features to help you create, share, maintain, and secure your APIs. You can use
Cloud Endpoints with any APIs that support the OpenAPI Specification.

Cloud Endpoints supports applications running in App Engine, Google Kubernetes
Engine, and Compute Engine. Clients include Android, iOS, and Javascript.

Proprietary + Confidential

API Gateway

Backend implementations can vary for a single service provider

Provide secure access to your backend services through a well-defined
REST API

Clients consume your REST APIS to implement standalone apps

Web-based services today provide a huge variety of functionality, meaning everything
from map, weather, and image services, to games, auctions, and many other service
types. Service providers have many options for how to implement, deploy, and
manage their services. For example, one service might be developed in Java or .NET,
while another uses Node.js.

Backend implementations can also vary for a single service provider. A service
provider might have legacy services implemented using one architecture, and new
services implemented using a completely different architecture.

API Gateway enables you to provide secure access to your backend services through
a well-defined REST API that is consistent across all of your services, regardless of
the service implementation.

Clients consume your REST APIS to implement standalone apps for a mobile device
or tablet, through apps running in a browser, or through any other type of app that can
make a request to an HTTP endpoint.

Proprietary + Confidential

Apigee Edge

Specific focus on business problems, like rate limiting, quotas,
and analytics

Many Apigee API Management users provide a software service
to other companies

Backend services for Apigee API Management don't need to be
in Google Cloud

Another Google Cloud platform available for developing and managing API proxies is
Apigee API Management. Unlike Cloud Endpoints, Apigee Edge has a specific focus
on business problems, like rate limiting, quotas, and analytics. In fact, many Apigee
API Management users provide a software service to other companies.

Backend services for Apigee API Management don't have to be in Google Cloud, and
as a result, engineers also often use it to take apart legacy applications. So, instead of
replacing a large, important application in one move, they can use Apigee API
Management to peel off its services individually instead. This allows them to stand up
microservices to implement each in turn, until the legacy application can finally be
retired.

Proprietary + Confidential

App Engine

Google Cloud API management tools

Cloud Run

Applications in the Cloud

01
02
03

Proprietary + Confidential

Cloud Run is managed serverless computing

A managed compute platform that can run stateless containers

Serverless, removing the need for infrastructure management

Built on Knative, an open API and runtime environment built on Kubernetes

Can automatically scale up and down from zero almost instantaneously,
charging only for the resources used

The final application platform we’ll explore in this section of the course is Cloud Run, a
managed compute platform that lets you run stateless containers via web requests or
Pub/Sub events.

Cloud Run is serverless. That means it removes all infrastructure management tasks
so you can focus on developing applications.

It is built on Knative, an open API and runtime environment built on Kubernetes that
gives you freedom to move your workloads across different environments and
platforms. It can be fully managed on Google Cloud, on Google Kubernetes Engine, or
anywhere Knative runs.

Cloud Run is fast. It can automatically scale up and down from zero almost
instantaneously, and it charges you only for the resources you use, calculated down to
the nearest 100 milliseconds, so you‘ll never pay for your over-provisioned resources.

Proprietary + Confidential

Google Cloud Run workflow is a three-step process

1 2 3

Write your code Build and package Deploy to Cloud Run

Container image

(from Artifact Registry)

Application

Listen on a port and
accept requests

Web app

Source code

The Cloud Run developer workflow is a straightforward three-step process.

● First, you write your application using your favorite programming language.
This application should start a server that listens for web requests.

● Second, you build and package your application into a container image.
● Third, the container image is pushed to Artifact Registry, where Cloud Run will

deploy it.

Note that Cloud Run can only deploy images that are stored in the Artifact Registry.

You can build, push and deploy your own code from your local source if you have the
required permissions. (You can also deploy an image that already exists in Artifact
Registry.)

Once you’ve deployed your container image, you’ll get a unique HTTPS URL back.

Cloud Run then starts your container on demand to handle requests, and ensures that
all incoming requests are handled by dynamically adding and removing containers.

Cloud Run is serverless. That means that you, as a developer, can focus on building
your application, and not on building and maintaining the infrastructure that powers
your application.

Proprietary + Confidential

Cloud Run also has a source-based workflow

1

Write your code

2

Deploy to Cloud Run using Buildpacks

Source code

Container image

Buildpacks

Web app

For some use cases, a container-based workflow is great, because it gives you a great
amount of transparency and flexibility.

If you build the container image, you have the power to decide exactly what file ends
up in your container image, and how it gets there.

However, building an application is hard enough already, let alone having to think
about containerization and the responsibilities that come with that.

Sometimes, you’re just looking for a way to turn source code into an HTTPS endpoint,
and you want your vendor to make sure it your container image is secure,
well-configured and built in a consistent way.

With Cloud Run, you can do both. You can use a container-based workflow, as well as
a source-based workflow.

If you use the source-based approach, you’ll deploy your source code, instead of a
container image. Cloud Run then builds your source and packages the application into
a container image for you.

Cloud Run does this using Buildpacks - an open source project.

Proprietary + Confidential

Cloud Run handles HTTPS serving for you

Cloud Run

https:// ***.run.app
https://your.domain

HTTPS Cloud Run Proxy

Client

ContainerHTTP

Cloud Run handles HTTPS serving for you. That means you only have to worry about
handling web requests, and you can let Cloud Run take care of adding the encryption.

● By default, your application is exposed on a unique subdomain of the global
*run.app domain

● You can also use your own, custom domain.

Cloud Run manages everything else:
● Generating a valid SSL certificate
● Configuring SSL termination correctly with secure settings
● Handling incoming requests, decrypting them and forwarding them to your

application

Proprietary + Confidential

You are only charged when your
container handles requests

Billable

Non-billable

Handling requests

Container lifespan

Time

ShutdownStartup

The pricing model on Cloud Run is unique; as you only pay for the system resources
you use while a container is handling web requests, with a granularity of 100ms, and
when it is starting or shutting down.

You do not pay for anything if your container does not handle requests.

Additionally, there is a small fee for every one million requests you serve.

The price of container time increases with CPU and memory. A container with more
vCPU and memory is more expensive. Today, Cloud run can allocate up to 4 vCPUs
and 8GB of memory.

Most of the other compute products (such as Compute Engine), charge for servers as
long as they are running, even if you are not using them. That means you’re often
paying for idle server capacity.

Proprietary + Confidential

Cloud Run can run any binary

Source code

System packages

Library dependencies

Runtime

Binaries

Compiled for Linux 64-bit

Container
image

You can use Cloud Run to run any binary, as long as it is compiled for Linux sixty-four
bit.

Now, this means you can use Cloud Run to run web applications written using popular
languages, such as:

● Java
● Python
● Node.js
● PHP
● Go
● C++

And you can also run code written in less popular languages:
● Cobol
● Haskell
● Perl

As long as your app handles web requests, you’re good to go.

Proprietary + Confidential

Module Quiz

Proprietary + Confidential

Quiz | Question 1

Question

What other services are offered to the applications that App Engine runs?

A. Just load balancing and user authentication

B.
NoSQL databases, in-memory caching, load balancing, health checks, logging, and
user authentication

C. Just NoSQL databases and user authentication

D. NoSQL databases, in-memory caching, load balancing, health checks, and logging

Proprietary + Confidential

Quiz | Question 1

Answer

What other services are offered to the applications that App Engine runs?

A. Just load balancing and user authentication

B.
NoSQL databases, in-memory caching, load balancing, health checks, logging, and
user authentication

C. Just NoSQL databases and user authentication

D. NoSQL databases, in-memory caching, load balancing, health checks, and logging

In addition to App Engine running applications; What services are offered to the
applications it runs?

A: Just load balancing and user authentication.
Feedback: Sorry, that's not correct. App Engine offers NoSQL databases, in-memory
caching, load balancing, health checks, logging, and user authentication to
applications running in it.

B: NoSQL databases, in-memory caching, load balancing, health checks, logging,
and user authentication
Feedback: That's correct! App Engine offers NoSQL databases, in-memory caching,
load balancing, health checks, logging, and user authentication to applications
running in it.

C: Just NoSQL databases and user authentication
Feedback: Sorry, that's not correct. App Engine offers NoSQL databases, in-memory
caching, load balancing, health checks, logging, and user authentication to
applications running in it.

D: NoSQL databases, in-memory caching, load balancing, health checks, and logging.
Feedback: Sorry, that's not correct. App Engine offers NoSQL databases, in-memory
caching, load balancing, health checks, logging, and user authentication to
applications running in it.

Proprietary + Confidential

Quiz | Question 2

Question

You want to do business analytics and billing on a customer-facing API. Which Google
Cloud service should you choose?

A. Apigee API Management

B. Cloud Endpoints

C. Compute Engine API

D. Cloud Run API

Proprietary + Confidential

You want to do business analytics and billing on a customer-facing API. Which Google
Cloud service should you choose?

A. Apigee API Management

B. Cloud Endpoints

C. Compute Engine API

D. Cloud Run API

Quiz | Question 2

Answer

You want to do business analytics and billing on a customer-facing API. Which Google
Cloud service should you choose?

A: Apigee API Management
Feedback: Correct!

B: Cloud Endpoints
Feedback: Review the “Google Cloud API management tools" lecture.

C: Compute Engine API
Feedback: Review the “Google Cloud API management tools" lecture.

D: Cloud Run API
Feedback: Review the “Google Cloud API management tools" lecture.

Proprietary + Confidential

Quiz | Question 3

Question

Cloud Run can only pull images from:

A. Docker Hub

B. Self-hosted registries

C. Artifact Registry

D. GitHub

Proprietary + Confidential

Cloud Run can only pull images from:

A. Docker Hub

B. Self-hosted registries

C. Artifact Registry

D. GitHub

Quiz | Question 3

Answer

Cloud Run can only pull images from:

A: Docker Hub
Feedback: Review the "Cloud Run" lecture.

B: Self-hosted registries
Feedback: Review the "Cloud Run" lecture.

C: Artifact Registry
Feedback: Correct!

D: GitHub
Feedback: Review the "Cloud Run" lecture.

Proprietary + Confidential

Lab Intro
Hello Cloud Run

The goal of this lab is for you to build a
simple containerized application image
and deploy it to Cloud Run.

