
Proprietary + Confidential

Logging and
Monitoring
in the Cloud

08

Proprietary + Confidential

MonitoringLogging

Let’s transition our focus from developing and deploying in the cloud to logging and
monitoring.

Proprietary + Confidential

Logging and monitoring in the Cloud

Monitoring

SLIs, SLOs, and SLAs

Integrated monitoring, logging, alerting, and debugging

01
02
03

In this section of the course, we’ll explore the importance of monitoring performance
as it relates to product reliability, then move on to define service level indicators
(SLIs), service level objectives (SLOs), and service level agreements (SLAs). After that,
we’ll look at the purpose of integrated monitoring, logging, alerting, and debugging.

Proprietary + Confidential

Logging and monitoring in the Cloud

Monitoring

SLIs, SLOs, and SLAs

Integrated monitoring, logging, alerting, and debugging

01
02
03

Let’s begin with monitoring.

Proprietary + Confidential

Monitoring is the foundation of product reliability

Reveals what needs urgent attention

Shows trends in application usage patterns

Helps improve an application experience

Monitoring is the foundation of product reliability. It reveals what needs urgent
attention and shows trends in application usage patterns, which can yield better
capacity planning, and generally help improve an application client's experience, and
lessen their pain.

Proprietary + Confidential

Collecting, processing, aggregating,
and displaying real-time quantitative
data about a system, such as:

Query counts and types

Error counts and types

Processing times

Server lifetimes

Google’s Site Reliability
Engineering book

sre.google/books/

Monitoring gives you real-time system information

In Google's Site Reliability Engineering book, which is available to read at
https://sre.google/books/, monitoring is defined as:

"Collecting, processing, aggregating, and displaying real-time quantitative data
about a system, such as query counts and types, error counts and types,
processing times, and server lifetimes."

Proprietary + Confidential

Monitoring

Ensure continued system operations

Uncover trend analyses over time

Build dashboards

Alert personnel when systems violate
predefined SLOs

Compare systems and systems changed

Provide data for improved incident response

With monitoring, you can ensure continued system operations, uncover trend analyses
over time, build dashboards, alert personnel when systems violate predefined SLOs,
compare systems and systems changed, and provide data for improved incident
response–just to name a few tasks.

Proprietary + Confidential

Monitoring is the foundation of product reliability

Product

Developing

Capacity planning

Testing

Postmortems  / root cause analyses

Incident response

Monitoring

An application client normally only sees the public side of a product, and as a result,
developers and business stakeholders both tend to think that the most crucial way to
make the client happy is by spending the most time and effort on developing that part
of the product.

However, to be truly reliable, even the very best products still must be deployed into
environments with enough capacity to handle the anticipated client load.

Great products also need thorough testing, preferably automated testing, and a
refined continuous integration/continuous development (CI/CD) release pipeline.

Postmortems and root cause analyses are the DevOps team's way of letting the client
know why an incident happened and why it is unlikely to happen again. In this context
we are discussing a system or software failure, but the term “incident” can also be
used to describe a breach of security. Transparency here is key to building trust.

Proprietary + Confidential

What’s needed from products

Continual
improvement

Dashboards Automated
alerts

Monitoring
tools

We need our products to improve continually, and we need data we can receive from
monitoring to make sure that happens.

We need dashboards to provide business intelligence so our DevOps personnel have
the data they need to do their jobs.

We need automated alerts because humans tend to look at things only when there's
something important to look at. An even better option is to construct automated
systems to handle as many alerts as possible so humans only have to look at the
most critical issues.

Finally, we need monitoring tools that help provide data crucial to debugging
application functional and performance issues. We’ll look more closely at Google’s
integrated monitoring tools a bit later in this module.

Proprietary + Confidential

Four Golden Signals

Latency Traffic Saturation Errors

There are “Four Golden Signals” that measure a system’s performance and reliability.
They are latency, traffic, saturation, and errors.

Proprietary + Confidential

The importance of latency
It directly affects the user
experience.

Changes in latency could indicate
emerging issues.

Its values may be tied to capacity
demands.

It can be used to measure system
improvements.

01

02

03

04

Latency measures how long it takes a particular part of a system to return a result.

Latency is important because:
1. It directly affects the user experience.
2. Changes in latency could indicate emerging issues.
3. Its values may be tied to capacity demands.
4. It can be used to measure system improvements.

Proprietary + Confidential

Page load latency

Number of requests waiting for a thread

Query duration

Service response time

Transaction duration

Time to first response

Time to complete data return

Latency measurements

But how is it measured? Sample latency metrics include:

● Page load latency
● Number of requests waiting for a thread
● Query duration
● Service response time
● Transaction duration
● Time to first response
● Time to complete data return

Proprietary + Confidential

The importance of traffic

It’s an indicator of current system
demand.

Its historical trends are used for
capacity planning.

It’s a core measure when
calculating infrastructure spend.

01

02

03

The next signal is traffic, which measures how many requests are reaching your
system.

Traffic is important because:
1. It’s an indicator of current system demand.
2. Its historical trends are used for capacity planning.
3. It’s a core measure when calculating infrastructure spend.

Proprietary + Confidential

HTTP requests
per second

requests for static
vs. dynamic content

Network I/O

concurrent
sessions

transactions
per second

Traffic measurements

retrievals
per second

active requests

write ops

read ops

And # active
connections

Sample traffic metrics include:
● # HTTP requests per second
● # requests for static vs. dynamic content
● Network I/O
● # concurrent sessions
● # transactions per second
● # retrievals per second
● # active requests
● # write ops
● # read ops
● And # active connections

Proprietary + Confidential

The importance of saturation

It focuses on the most constrained
resources.

It’s frequently tied to degrading
performance as capacity is reached.

02

03

It's an indicator of how full the
service is.01

The third signal is saturation, which measures how close to capacity a system is. It’s
important to note, though, that capacity is often a subjective measure, that depends
on the underlying service or application.

Saturation is important because:
1. It's an indicator of how full the service is.
2. It focuses on the most constrained resources.
3. It’s frequently tied to degrading performance as capacity is reached.

Proprietary + Confidential

Saturation measurements

% memory utilization

% thread pool utilization

% cache utilization

% disk utilization

% CPU utilization

Disk quota

Memory quota

of available connections

And # of users on the system

Sample capacity metrics include:
● % memory utilization
● % thread pool utilization
● % cache utilization
● % disk utilization
● % CPU utilization
● Disk quota
● Memory quota
● # of available connections
● And # of users on the system

Proprietary + Confidential

The importance of errors
They may indicate that something
is failing

They may indicate configuration
or capacity issues

They can indicate service level
objective violations

An error might mean it's time
to send out an alert

01

02

03

04

The fourth signal is errors, which are events that measure system failures or other
issues. Errors are often raised when a flaw, failure, or fault in a computer program or
system causes it to produce incorrect or unexpected results, or behave in unintended
ways.

Errors are important because:
1. They may indicate that something is failing.
2. They may indicate configuration or capacity issues.
3. They can indicate service level objective violations.
4. An error might mean it's time to send out an alert.

Proprietary + Confidential

Wrong answers or incorrect content

400/500 HTTP codes

failed requests

exceptions

stack traces

Servers that fail liveness checks

And # dropped connections

Errors measurements

Sample error metrics include:
● Wrong answers or incorrect content
● # 400/500 HTTP codes
● # failed requests
● # exceptions
● # stack traces
● Servers that fail liveness checks
● And # dropped connections

Proprietary + Confidential

Logging and Monitoring in the Cloud

The importance of monitoring

SLIs, SLOs, and SLAs

Integrated logging, monitoring, alerting, & debugging

01
02
03

Now let’s shift our focus to SLIs, SLOs and SLAs, which are all types of targets set for
a system’s Four Golden Signal metrics.

Proprietary + Confidential

Carefully selected monitoring
metrics that measure one aspect
of a service's reliability

Service Level
Indicator

Service level indicators, or SLIs, are carefully selected monitoring metrics that
measure one aspect of a service's reliability. Ideally, SLIs should have a close linear
relationship with your users' experience of that reliability, and we recommend
expressing them as the ratio of two numbers: the number of good events divided by
the count of all valid events.

Proprietary + Confidential

Combines a service level
indicator with a target reliability
and will generally be somewhere
just short of 100%, for example,
99.9% ("three nines")

Service Level
Objective

A Service level objective, or SLO, combines a service level indicator with a target
reliability. If you express your SLIs as is commonly recommended, your SLOs will
generally be somewhere just short of 100%, for example, 99.9%, or "three nines."

Proprietary + Confidential

Specific

Measurable

Achievable

Relevant

Time-bound

S

M

A

R

T
Service Level

Objective

You can't measure everything, so when possible, you should choose SLOs that are
S.M.A.R.T.

SLOs should be specific. "Hey everyone, is the site fast enough for you?" is not
specific; it's subjective. "The 95th percentile of results are returned in under 100ms."
That's specific.

They need to be based on indicators that are measurable. A lot of monitoring is
numbers, grouped over time, with math applied. An SLI must be a number or a delta,
something we can measure and place in a mathematical equation.

SLO goals should be achievable. "100% Availability" might sound good, but it's not
possible to obtain, let alone maintain, over an extended window of time.

SLOs should be relevant. Does it matter to the user? Will it help achieve
application-related goals? If not, then it’s a poor metric.

And SLOs should be time-bound. You want a service to be 99% available? That’s fine.
Is that per year? Per month? Per day? Does the calculation look at specific windows of
set time, from Sunday to Sunday for example, or is it a rolling period of the last seven
days? If we don't know the answers to those types of questions, it can’t be measured
accurately.

Proprietary + Confidential

Commitments made to your
customers that your systems and
applications will have only a certain
amount of down time

Service Level
Agreement

And then there are Service Level Agreements, or SLAs, which are commitments
made to your customers that your systems and applications will have only a certain
amount of “down time.”

An SLA describes the minimum levels of service that you promise to provide to your
customers and what happens when you break that promise.

If your service has paying customers, an SLA may include some way of compensating
them with refunds or credits when that service has an outage that is longer than this
agreement allows.

To give you the opportunity to detect problems and take remedial action before your
reputation is damaged, your alerting thresholds are often substantially higher than the
minimum levels of service documented in your SLA.

Proprietary + Confidential

To improve service reliability, all parts of the business must agree
that these are an accurate measure of user experience and must

agree to use them as a primary driver for decision making

For SLOs, SLIs and SLAs to help improve service reliability, all parts of the business
must agree that they are an accurate measure of user experience and must also
agree to use them as a primary driver for decision making.

Being out of SLO must have concrete, well-documented consequences, just as there
are consequences for breaching SLAs.

For example, slowing down the rate of change and directing more engineering effort
towards eliminating risks and improving reliability are actions that could be taken to
get your product back to meeting its SLOs faster.

Operations teams need strong executive support to enforce these consequences and
effect change in your development practice.

Proprietary + Confidential

Logging and Monitoring in the Cloud

Monitoring

SLIs, SLOs, and SLAs

Integrated monitoring, logging, alerting, and debugging

01
02
03

Let’s wrap up this section by taking a look at Google Cloud’s integrated monitoring,
logging, alerting, and debugging tools.

Proprietary + Confidential

On-premises Cloud

Observability toolsPhysical check

If you've ever worked with on-premises environments, you know that you can
physically touch the servers. If an application becomes unresponsive, someone can
physically determine why that happened.

In the cloud though, the servers aren't yours—they're Google’s—and you can’t
physically inspect them. So the question becomes, how do you know what's
happening with your server, or database, or application?

The answer is by using Google’s integrated observability tools.

Proprietary + Confidential

Troubleshoot

Capture Signals Visualize and Analyze Manage Incidents

Metrics

Apps
Services
Platform
Microservices

Logs
Apps
Services
Platform

Trace Apps

Dashboards

Metrics Explorer

Logs Explorer

Service Monitoring

Health Checks

Snapshot debugger

Profiler

Alerts

Error Reporting

SLO

Observability starts with signals, which are metric, logging, and trace data captured
and integrated into Google products from the hardware layer up.

From those products:
● The signal data flows into the Google Cloud operation's tools where it can be

visualized in dashboards and through the Metrics Explorer.
● Automated and custom logs can be dissected and analyzed in the Logs

Explorer.
● Services can be monitored for compliance with service level objectives (SLOs),

and error budgets can be tracked.
● Health checks can be used to check uptime and latency for external-facing

sites and services.
● And running applications can be debugged and profiled.

When incidents occur:
● Signal data can generate automated alerts to code or, through various

information channels, to key personnel.
● Error Reporting can help operations and developer teams spot, count, and

analyze crashes in cloud-based services.
● The visualization and analysis tools can then help troubleshoot what's

happening in Google Cloud.

Ultimately, you won't miss that easy server access, because Google provides more
precise insights into your Cloud install than you ever had on-premises.

Proprietary + Confidential

Monitoring Logging Error reporting Debugging

Products for operations roles

Let’s explore the products most applicable for those in operations roles that work with
monitoring, logging, error reporting, and debugging.

Proprietary + Confidential

Monitoring

BigQuery

Queries in flight, scanned
bytes billed, slots used

Compute

CPU and memory utilization,
Uptime, disk throughput

Cloud Run

CPU utilization, billable time,
memory utilization

Applications

OpenTelemetry custom
metrics

When DevOps personnel want to track exactly what's happening inside Google Cloud
projects, they often first think of monitoring.

As we stated previously, monitoring starts with signal data. Metrics take
measurements and use math to align those measurements over time. For example, it
might be taking raw CPU usage measurement values and averaging them to produce
a single value per minute.

Google Cloud, by default, collects more than a thousand different streams of metric
data, which can be incorporated into dashboards, alerts, and several other key tools.

When data scientists run massive, scalable queries in BigQuery, it’s important for
them to know how many queries are currently in flight, how many bytes have been
scanned and added to the bill, and data slot usage patterns.

It could also be critical to DevOps teams running containerized applications in Cloud
Run to know CPU and memory utilization, and app bill time.

And if those same DevOps teams want to augment the signal metrics from their
custom application wherever it's running, they could use the open-source
OpenTelementry and create their own metrics.

Workloads on Compute Engine will benefit from CPU and memory utilization data,
along with uptime, disk throughput, and many other metrics.

Proprietary + Confidential

Provides visibility into the performance, uptime,
and overall health of cloud-powered applications

Collects metrics, events, and metadata from
projects, logs, services, systems, agents, custom
code, and various common application
components

Includes Cassandra, Nginx, Apache Web Server,
Elasticsearch, and many others.

Ingests that data and generates insights via
dashboards, Metrics Explorer charts, and
automated alerts

Cloud
Monitoring

Cloud monitoring provides visibility into the performance, uptime, and overall health of
cloud-powered applications. It collects metrics, events, and metadata from projects,
logs, services, systems, agents, custom code, and various common application
components, including Cassandra, Nginx, Apache Web Server, Elasticsearch, and
many others.

Monitoring ingests that data and generates insights via dashboards, Metrics Explorer
charts, and automated alerts.

Proprietary + Confidential

Cloud
Logging

Collect

Store

Search

Analyze

Monitor

Alert

Google's Cloud Logging allows users to collect, store, search, analyze, monitor, and
alert on log entries and events. Automated logging is integrated into Google Cloud
products like App Engine, Cloud Run, Compute Engine VMs running the logging agent,
and GKE.

Proprietary + Confidential

Cloud Logging

Analyze

Analyze log data in real
time with the integrated
Logs Explorer

Analyze exported logs
from Cloud Storage or
BigQuery

Export to Cloud Storage,
or Pub/Sub, or BigQuery

Create logs-based
metrics for augmented
Monitoring

Data access and service
logs 30 days
(configurable), and admin
logs for 400 days

Longer retention available
in Cloud Storage or
BigQuery

Export Retain

Most log analysis starts with Google Cloud’s integrated Logs Explorer. Logging entries
can also be exported to several destinations for alternative or further analysis.
Pub/Sub messages can be analyzed in near-real time using custom code or stream
processing technologies like Dataflow. BigQuery allows analysts to examine logging
data through SQL queries. And archived log files in Cloud Storage can be analyzed
with several tools and techniques.

Log data can be exported as files to Cloud Storage, as messages through Pub/Sub, or
into BigQuery tables. Logs-based metrics can be created and integrated into Cloud
Monitoring dashboards, alerts, and service SLOs.

Default log retention in Cloud Logging depends on the log type. Data access logs are
retained by default for 30 days, but this is configurable up to a max of 3650 days.
Admin logs are stored by default for 400 days. Export logs to Cloud Storage or
BigQuery to extend retention.

Proprietary + Confidential

Key log categories

Cloud Audit Logs

● “Who did what,
where?”

● Admin Activity

● Data Access

● System Event

● Access Transparency

Agent Logs Network Logs Service Logs

03

● Fluentd agent

● Common third-party
applications

● System software

● VPC flow

● Firewall rules

● NAT gateway

● Load Balancer

● Standard Out / Error

● Created with API

The Google Cloud platform logs visible to you in Cloud Logging vary, depending on
which Google Cloud resources you're using in your Google Cloud project or
organization. Four key log categories are audit logs, agent logs, network logs, and
service logs.

Cloud Audit Logs helps answer the question, "Who did what, where, and when?"
Admin activity tracks configuration changes. Data access tracks calls that read the
configuration or metadata of resources and user-driven calls that create, modify, or
read user-provided resource data. System events are non-human Google Cloud
administrative actions that change the configuration of resources. Access
Transparency provides you with logs that capture the actions Google personnel take
when accessing your content.

Agent logs use a Google-customized and packaged Fluentd agent that can be
installed on any AWS or Google Cloud VM to ingest log data from Google Cloud
instances–for example, Compute Engine, Managed VMs, or Containers–and AWS EC2
instances.

Network logs provide both network and security operations with in-depth network
service telemetry. VPC Flow Logs records samples of VPC network flow and can be
used for network monitoring, forensics, real-time security analysis, and expense
optimization. Firewall Rules Logging allows you to audit, verify, and analyze the
effects of your firewall rules. NAT Gateway logs capture information on NAT network
connections and errors.

Service logs provide access to logs created by developers deploying code to Google
Cloud. For example, if they build a container using Node.js and deploy it to Cloud Run,
any logging to Standard Out or Standard Error will automatically be sent to Cloud
Logging for easy, centralized viewing.

Proprietary + Confidential

Counts, analyzes, and aggregates the
crashes in your running cloud services.

Management interface displays the results
with sorting and filtering capabilities.

A dedicated view shows the error details:
time chart, occurrences, affected user
count, first- and last-seen dates, and a
cleaned exception stack trace.

Create alerts to receive notifications on
new errors.

Error Reporting

Error Reporting counts, analyzes, and aggregates the crashes in your running cloud
services. Crashes in most modern languages are “Exceptions,” which are not caught
and handled by the code itself. Its management interface displays the results with
sorting and filtering capabilities. A dedicated view shows the error details: time chart,
occurrences, affected user count, first- and last-seen dates, and a cleaned exception
stack trace. You can also create alerts to receive notifications on new errors.

Proprietary + Confidential

Collects latency data from distributed applications
and displays it in the Google Cloud console.

Captures traces from applications deployed on App
Engine, Compute Engine VMs, and Google
Kubernetes Engine containers.

Performance insights are provided in near-real time.

Automatically analyzes all of your application's
traces to generate in-depth latency reports to
surface performance degradations.

Continuously gathers and analyzes trace data to
automatically identify recent changes to application
performance.

Cloud Trace

Cloud Trace, based on the tools Google uses on its production services, is a tracing
system that collects latency data from your distributed applications and displays it in
the Google Cloud console.

Trace can capture traces from applications deployed on App Engine, Compute Engine
VMs, and Google Kubernetes Engine containers.

Performance insights are provided in near-real time, and Trace automatically analyzes
all of your application's traces to generate in-depth latency reports to surface
performance degradations.

Trace continuously gathers and analyzes trace data to automatically identify recent
changes to your application's performance.

Proprietary + Confidential

Uses statistical techniques and extremely
low-impact instrumentation that runs across all
production application instances to provide a
complete CPU and heap picture of an application.

Allows developers to analyze applications running
anywhere, including Google Cloud, other cloud
platforms, or on-premises, with support for Java,
Go, Python, and Node.js.

Presents the call hierarchy and resource
consumption of the relevant function in an
interactive flame graph.

Cloud Profiler

Poorly performing code increases the latency and cost of applications and web
services every day, without anyone knowing or doing anything about it.

Cloud Profiler changes this by using statistical techniques and extremely low-impact
instrumentation that runs across all production application instances to provide a
complete CPU and heap picture of an application without slowing it down.

With broad platform support that includes Compute Engine VMs, App Engine, and
Kubernetes, it allows developers to analyze applications running anywhere, including
Google Cloud, other cloud platforms, or on-premises, with support for Java, Go,
Python, and Node.js.

Cloud Profiler presents the call hierarchy and resource consumption of the relevant
function in an interactive flame graph that helps developers understand which paths
consume the most resources and the different ways in which their code is actually
called.

Proprietary + Confidential

Module Quiz

Proprietary + Confidential

Quiz | Question 1

Question

What are the four golden signals?

A. Availability, durability, scalability, resiliency

B. Latency, traffic, saturation, errors

C. Get, post, put, delete

D. KPIs, SLIs, SLOs, SLAs

Proprietary + Confidential

What are the four golden signals?

A. Availability, durability, scalability, resiliency

B. Latency, traffic, saturation, errors

C. Get, post, put, delete

D. KPIs, SLIs, SLOs, SLAs

Quiz | Question 1

Answer

What are the four golden signals?

A: Availability, durability, scalability, resiliency
Feedback: Review the lecture "Monitoring"

B: Latency, traffic, saturation, errors
Feedback: Correct!

C: Get, post, put, delete
Feedback: Review the lecture "Monitoring"

D: KPIs, SLIs, SLOs, SLAs
Feedback: Review the lecture "Monitoring"

Proprietary + Confidential

Quiz | Question 2

Question

Which of the following definitions best describes an SLI?

A. It is a time-bound measurable attribute of a service.

B. It is a percentage goal of a measure you intend your service to achieve.

C. It represents a contract with your customers regarding service performance.

D. It is a key performance indicator, for example, clicks per session or customer signups.

Proprietary + Confidential

Which of the following definitions best describes an SLI?

A. It is a time-bound measurable attribute of a service.

B. It is a percentage goal of a measure you intend your service to achieve.

C. It represents a contract with your customers regarding service performance.

D. It is a key performance indicator, for example, clicks per session or customer signups.

Quiz | Question 2

Answer

Which of the following definitions best describes an SLI?

A: It is a time-bound measurable attribute of a service
Feedback: Correct!

B: It is a percentage goal of a measure you intend your service to achieve
Feedback: Incorrect. Review the lecture "SLIs, SLOs, and SLAs"

C: It represents a contract with your customers regarding service performance
Feedback: Incorrect. Review the lecture "SLIs, SLOs, and SLAs"

D: It is a key performance indicator, for example, clicks per session or customer
signups
Feedback: Incorrect. Review the lecture "SLIs, SLOs, and SLAs"

Proprietary + Confidential

Quiz | Question 3

Question

You want to define alerts to notify you when health checks on your Google Cloud
resources fail. Which is the best Google Cloud product to use?

A. Error Reporting

B. Terraform

C. Cloud Trace

D. Cloud Monitoring

E. Cloud Functions

Proprietary + Confidential

You want to define alerts to notify you when health checks on your Google Cloud
resources fail. Which is the best Google Cloud product to use?

A. Error Reporting

B. Terraform

C. Cloud Trace

D. Cloud Monitoring

E. Cloud Functions

Quiz | Question 3

Answer

You want to define alerts on your Google Cloud resources, such as when health
checks fail. Which is the best Google Cloud product to use?

A: Error Reporting
Feedback: Incorrect. Review the lecture "Monitoring: Proactive instrumentation."

B: Terraform
Feedback: Incorrect. Review the lecture "Monitoring: Proactive instrumentation."

C: Cloud Trace
Feedback: Incorrect. Review the lecture "Monitoring: Proactive instrumentation."

D: Cloud Monitoring
Feedback: Correct!

E: Cloud Functions
Feedback: Incorrect. Review the lecture "Monitoring: Proactive instrumentation."

